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ABSTRACT 

Polarizations of solutes undergoing electrophoresis occur at the interfaces of aqueous two-phase systems. The first mathematical 
model of this situation is presented, and is shown to predict results qualitatively similar to our experimental work. The numerical 
simulation of electrophoresis is based on an earlier single-phase model, extended with additional equations and boundary conditions 
needed in the two-phase case. Results from the simulation of some simple model systems are presented and discussed. 

INTRODUCTION 

We have previously shown that the electrophore- 
sis of solutes across the‘ interface in aqueous two- 
phase systems could be strongly influenced by the 
partitioning of the solutes in the systems [l]. Un- 
expected polarization was noted as proteins or 
certain dyes were transported across the interface 
from preferred to non-preferred phase. The polari- 
zation was directional, in that movement from 
non-preferred to preferred phase appeared unaf- 
fected by the phase boundary. The problem is of 
considerable importance. Similar phenomena were 
reported by Maxwell in 1892 [2] for organic-organic 
interfaces. Nernst and Riesenfeld [3] noted the 
occurrence of polarizations at organic-aqueous in- 
terfaces in 1902. We believe our investigations to be 
the first report on these polarizations in aqueous- 
aqueous phase systems. This sort of behavior at 
interfaces can be used as the basis for novel separa- 
tions. It can also help clarify other examples of 
interphase transport in aqueous systems, such as 
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transport across cell membranes or within an elec- 
trochromatography column. Modeling was under- 
taken because of this practical importance, and also 
since these results were not accounted for by any 
current theory of electrophoresis. Using simple 
systems, our model demonstrates some of the essen- 
tial characteristics of the experimental results. 

The framework of our theory for electrophoretic 
transport is provided by Bier and co-workers [4-81, 
which we expand to account for the special case of a 
two-phase system. The model for electrophoresis in 
single phase systems is based on a set of unsteady 
state mass balances for each species i composing the 
complete system. The system is assumed isothermal 
with transport in one dimension only. A generation 
term Ri (mol/m3. s) enables the interconversion 
between neutral and charged species of a given 
molecule, 

where ci is the concentration of i (mol/m3) and t is 
time (s). Fi represents the flux of i in mol/m’ s given 

by 

F. = -~.~.a a’ c- 

I ‘1 'ax 
K=fJ aci 
e ‘Z (2) 
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Flux by both electrophoresis and diffusion is allow- 
ed, all other mechanisms are neglected. The left hand 
term in the flux equation describes electrophoretic 
motion, with zi representing the charge on i, !Ji a 
mobility factor in m2/V s, and &B/ax the gradient in 
applied potential (V/m). The right hand term in this 
equation characterizes diffusion. R is the gas con- 
stant in V Coulombs/K mol, T the absolute tem- 
perature in K and e the molar charge of 96 500 
Coulomb/mol. 

The generation term Ri is assumed to follow mass 
action kinetics, represented by equations of the form 

RAm = kfcHA - krcH+cA- (3) 

where kf and k, are forward and reverse reaction rate 
constants, respectively, in appropriate units. They 
describe an illustrative reaction such as, for example 

HA=H+ + A- (4) 

In addition to the set of partial differential 
equations (PDEs) resulting from describing the 
transport of each species i, a system of algebraic 
relationships must be simultaneously solved in order 
to fully describe the problem. Certain elementary 
species are conserved. For example, the rate at which 
water disappears from the system must be matched 
by the rate at which hydroxyl ion appears. Linear 
combinations of other species yield similar relation- 
ships. These may be summed to yield 

CziRi = 0 

The rate of charge generation within the system 
must be zero everywhere except at the electrodes. 
Therefore, the divergence of the sum of the fluxes of 
charged species is zero, 

- V CeziFi = 0 

Also, we assume that electroneutrality prevails on 
the scale of interest, 

CeZiCi = 0 

It is generally necessary to solve the equations 
numerically, because of the complex nature of the 
system. All the classically known modes of electro- 
phoresis could be described with this model, by 

proper choice of initial and boundary conditions for 
the PDEs [4]. 

MODEL FOR ELECTROPHORESIS IN TWO-PHASE SYS- 

TEMS 

Our model for two-phase electrophoresis begins 
with similar equations written for each phase of the 
two-phase system. Two additional boundary condi- 
tions are required at the interface in order to 
complete the description of this system. The work of 
Davies [9] and the text of Crank [lo] involving 
diffusion only across the interface of two-phase 
systems suggested two different possibilities. 

One assumption is instantaneous equilibrium 
across the phase boundary. If the two-phase system 
is considered infinite in extent with the interface at 
x = 0, phase a encompasses x < 0 and phase b 
extends from x > 0. Then 

K=% for x=0 

Ci,a 
(8) 

where K is the equilibrium partition coefficient of 
solute i. 

The second alternative for this boundary condi- 
tion is to assume that there is significant resistance to 
transport. Then, a mass transfer expression best 
defines the flux at the interface 

Fi = U(KCi,, - Ci,b) for X = 0 (9) 

where a is the mass transfer coefficient (m/s). 
For either possibility, the second boundary condi- 

tion at the interface states that all mass flowing out 
of phase a must flow into phase b. The fluxes across 
the phase boundary must match 

&,a = Fi,b for x=0 (10) 

To complete either description of the two-phase 
system, the remaining boundary and initial condi- 
tions must be stated 

Ci,a = Ci, _ m for x = -cc (11) 

Ci,b = ci, + a, for x= +cc (12) 

Ci,a = Cl, - m for t = 0 (13) 

Ci,b = Ci,+m for t = 0 (14) 

The new boundary conditions at the interface 
must be substituted into the finite difference approx- 
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imations for the PDEs at the appropriate spatial 
grid points. For example, consider an illustrative 
50-point grid. Concentrations are estimated at the 
grid points from fluxes, which are calculated be- 
tween grid points. The interface is located at the 
center of the grid, between points 25 and 26. The flux 
associated with transport across the interface is 
defined as flux 25. 

All concentrations in the model, except those on 
either side of the interface (25 and 26) are calculated 
by the normal finite difference approximation 

&+G= _(“----l) 
(15) 

where the subscript i now refers to position in the 
grid. The prime (‘) indicates a quantity being cal- 
culated at the next time point in the simulation from 
current time point data. 

To model the case of equilibrium across the 
interface, eqn. 15 must be written for grid points 25 
and 26: 

c;5 - c25 dt = _(,,,F24) 

h6 - c26 
dt = _(F26-&F25) 

(16) 

(17) 

By use of the boundary condition given by eqn. 10, 
the common flux 25 is eliminated between these 
equations. The equilibrium expression across the 
interface, eqn. 8, is then used to substitute for the 
new concentration at grid point 26: 

%( c25 - h5) + F24 = 3;s - c26) + F26 (18) 

This can be solved for the new concentration at 
point 25 

c;5 = (19) 

The equilibrium equation is then used once more to 
obtain 

46 = Kci5 (20) 

These last two equations replace eqn. 15 at grid 
points 25 and 26 for simulations where instantane- 
ous equilibrium is assumed across the interface. 
Calculation for concentration values at all other 
spatial grid points are made with eqn. 15. 

Alternatively, one may assume there is mass 
transfer resistance at the interface, not instantane- 
ous equilibrium. To model this case, the mass 
transfer expression, eqn. 9, is substituted for eqn. 2 
for flux 25 at the interface. Eqn. 2 is retained to 
calculate all other fluxes. 

The solution of the models for two-phase systems 
now follows easily from the single-phase model. All 
equations are put into non-dimensional form, The 
dimensionless form of eqn. 6 for conservation of 
charge is integrated to yield 

CZiFi = 8 (21) 

where Fi is now a dimensionless flux and 8 is the 
dimensionless current. An initial component distri- 
bution is input into the simulation package. Equilib- 
rium expressions derived from equations of the type 
shown by eqn. 3 are combined with the requirement 
for electroneutrality, eqn. 7. From this, pH and 
concentrations for ionizable species are obtained. 
Conductivity can then be calculated, which when 
combined with the applied current, yields the gra- 
dient in the potential between pairs of grid points. 
Fluxes for species are figured from eqn. 2 or 9, as 
appropriate. Eqn. 1, 19, or 20 is finally solved, as 
needed, to obtain concentrations at the new step 
forward in time. The Runga-Kutta-Fehlberg meth- 
od was used for integration in the examples which 
follow. The process is then essentially repeated, until 
the simulation time is finished. Complete details 
regarding the solution are available in the previously 
cited references [4-81. 

RESULTS 

The results presented here are from models in 
which the following simplifying assumptions are 
made. Only one component, the one of interest, is 
considered to be partitioned at the interface. All the 
other components in the simulation behave as 
though electrophoresis is taking place in a bulk 
phase. Furthermore, unless specified otherwise, 
each component has the same electrophoretic mobil- 
ity in either phase. Although this is not generally true 
in reality, it simplifies the interpretation of results 
since a change in mobility at the interface in and of 
itself will cause other polarization effects. We have 
previously demonstrated experimentally that for the 
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special case of equal electrophoretic velocity in 
either phase, polarizations still occur at the interface 
of two-phase systems [l]. 

The two models, with either instantaneous equi- 
librium or mass transfer resistance at the interface, 
have been run for a number of cases. To verify that 
each was working correctly, the limiting cases for 
bulk transport by diffusion only with a single solute 
was tested. Both models were found to be in 
excellent agreement with the analytical solutions 
published by Crank [lo]. Also, as a further check of 
the reliability of numerical solution, the amount of 
solute which accumulates at the interface with 
electrophoresis in the complete model compares well 
with the amount calculated for the case of an 
impermeable wall at the interface. 

The simulations used either hemoglobin or a 

TABLE I 

PARAMETERS FOR SIMULATIONS 

Concentration profiles are shown 1 min after electrophoresis 
begins from equilibrium conditions. 

Simulation space = 0.005 m divided into 200 grid points 

Initial current density = 20 A/m2 

For equilibrium model simulations 
Run assuming constant current 

Supporting Buffer 
0.01 Ma&ate ion, pK = 4.76, Sz = 4.12 lo-* m2/V s. 
0.0063 M ammonium ion, pK = 9.25, B = 6.39 lo-* 
ma/V s. 
pH = 5.0 

Hemoglobin, diffusion coefficient = 6.8 lo-’ cmZ/s 

PH Charge 
3.0 68.5 
3.5 43.5 
4.5 25.5 
6.0 10.25 
8.0 - 10.25 
9.0 -20.5 

10.0 -30.75 
11.0 - 50.0 
11.5 -63.5 

For mass transfer model simulations 

Run assuming constant voltage drop across separation space 

Supporting buffer 
O.OlM cacodylate ion, pK= 6.21, 62 =2.31’ 10m8 m’/V.s. 
0.0086 M Tris ion, pK = 8.30, 62 = 2.41 lo-* m2/V s. 
pH = 7.0 
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strong base as the partitioned component of interest. 
The base simplifies the interpretation of results. The 
values for the partition coefficient and the mass 
transfer coefficient were those given by Shanbhag 
[ll], for hemoglobin in a system similar, but not 
identical, to the two-phase system examined experi- 
mentally. The partitioned solute was present as a 
minor component of the system, over 3000 times 
more dilute than the next most dilute component. 
This reduces the interaction between the compo- 
nents. The remainder of the system was a buffer, to 
minimize the effect of pH. The system initially 
begins at its equilibrium distribution and the figures 
show a concentration profile calculated after the 
electric field has been applied for 1 min. Pertinent 
data for the simulations are summarized in Table I. 

Fig. 1 reports the results of a simulation with 
instantaneous equilibrium at the interface. Two 
differet values of the equilibrium partition coefti- 
cient K are examined. In both cases, phase a is the 
preferred phase, so that electrophoresis is from 
preferred into non-preferred phase. Material in both 
these simulations tends to concentrate on the left 
side of the interface. As the partitioning between the 
phases becomes greater (the partition coefficient 
decreases from a value of l), the observed polariza- 
tion increases. 

Fig. 2 also demonstrates the results of simulations 

(10’) Distance from Interface (m) 

Fig. 1. Concentration profile after 1 min of electrophoresis, with 
equilibrium for two different partition coefficients. For K = 0.41 
(--- ), c~,_.~ = c~,~,,=~ = 0.20 mol/m3; ci,m = ~~,s,~=~ = 
0.082 mol/m3. For K = 0.082 (- - -), ci m = ci b f=O = 0.0164 
mol/m3. The partitioned species is a strong base,‘&th 62 = 1.0 
lo-* m’/V s. 
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Fig. 2. Concentration profile after 1 min of electrophoresis, for 
the equilibrium model for three cases of directional transport. 
Transport from preferred to non-preferred phase (- ),K = 
0.41; ci,_m = ci,a,t=O = 0.20 mol/m3; ci m = ci bt=O = 0.082 
mol/m3. Transport from non-preferred to preferred phase 
(- - -), K = 2.439; c~,_~ = ci,a,t=O = 0.082 mol/m3; c;,~ = 

cib*=O . . = 0.20 mol/m3. Neither phase preferred (-----), K = 1; 
ci _m = ciatcO = ci m = ci b I=o = 0.20 mol/m3. Partitioned 
species is a’ strong base, as in Pig. 1. 

with equilibrium at the interface. For the simulation 
where K is 0.4 1, the solute is being transported from 
preferred to non-preferred phase, and concentration 
occurs at the interface. If K is changed to 2.439 
(l/0.41), the solute is electrophoresed from non- 
preferred to preferred phase. In this case, this model 
predicts a small dilution to occur at the interface. 
Finally, if K is set equal to 1, neither phase is 
preferred, and the solute is evenly distributed be- 
tween the phases at equilibrium. The model predicts 
that the interface has no observable effect on the 
transport of the solute under these conditions and 
no polarization is calculated for the interface. 

Fig. 3 examines a more complex situation, where 
the partitioned species has two times the mobility in 
phase b compared with phase a. This is compared 
with a similar simulation, with the same mobility in 
both phases. Equilibrium is assumed at the interface, 
with K = 0.41. The amount of polarization at the 
interface decreases with increased mobility in phase 
b. 

Behavior of the protein hemoglobin is examined 
in Fig. 4, in a simulation with equilibrium assumed 
at the interface. A comparison run is made with a 
strong base. For both simulations, K is set at 0.41. 

-0.05 0.00 0.05 

(10’) Distance from Interface (m) 

Fig. 3. Concentration profile after 1 min of electrophoresis for 
equilibrium model; effect of a mobility difference. With the same 
mobility in either phase (-- ), Q = 1 10-s m2/V s. For 
differingmobility(---),a = l.lO-*m2/V.sinphasea;2’ 
10-s mZ/V s in phase b. For both simulations, K = 0.41; 
ci -m = ciaf=c = 0.20 mol/m3; ci m G c~,~,~=,, = 0.082 mol/m3. 
Partitioned ‘species is a strong base. 

The protein is also predicted to concentrate at the 
interface, when electrophoresis is from preferred to 
non-preferred phase. The irregularity to the left of 
the concentrated zone is due to the difficulty in 
numerically simulating the sharp gradient in concen- 
tration in that neighborhood. 

In Fig. 5, concentration profiles from simulations 

1 

=! 0 I ! I 

-0.05 0.00 0.05 

(10’) Distance from Interface (m) 

Fig. 4. Concentration profile after 1 min of electrophoresis for 
equilibrium model; effect of the nature of the partitioned solute. 
Strong base (- ), &I = 1 10-s m2/V s; hemoglobin 
(---). For both simulations, K = 0.41; ci _m = cistzO = 
0.20 mol/m3; c~,~ = c~,~,,=~ = 0.082 mol/m3. ’ ’ ’ 
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Fig. 5. Concentration profile after 1 min of electrophoresis for 
mass transfer model for two different mass transfer coefficients. 
For low mass transfer case (- ), a = 2.29 lo-’ m/s, for 
high mass transfer case (- - -), tl = 2.29 10e6 m/s. For both 
cases, K = 0.41; C~,_~ = ci,a,t=O = 0.20 mol/m3; ci,m = 

cit,t=Ll 
Fig. 1. 

= 0.082 mol/m3. Partitioned species is a strong base, as in 

which use a mass transfer resistance model at the 
interface are shown. Two sets of values for these 
coefficients are compared, a low interfacial mass 
transfer rate and a high rate. As expected, the case 
with a lower mass transfer rate demonstrates a 
greater concentration of the strong base at the 
interface for equivalent electric fields applied for the 
same amount of time. 

DISCUSSION 

Both models presented here qualitatively demon- 
strate the most startling effect of our electrophoresis 
experiments in two-phase systems, the polarization 
at the interface when electrophoresis is from pre- 
ferred to non-preferred phase. 

The equilibrium model predicts dilution at the 
interface when transport is from non-preferred to 
preferred phase. It also calculates no observable 
polarizations when K = 1. Both of these results 
were observed experimentally, as reported in our 
earlier work. The polarization increases as the 
distribution of the solute between the phases at 
equilibrium becomes more dissimilar. 

Similar results can also be obtained from the 
resistance model. However, few experimental values 
are available for mass transfer coefficients at these 
interfaces, and our attempts at measuring them 

proved unsuccessful. We have concentrated on the 
equilibrium model, as it provides a simpler explana- 
tion of the phenomenon. 

The versatility of the model is demonstrated by 
the simulation which contains protein and the 
simulation with the change in solute mobility at the 
interface. Weak electrolytes, peptides, and other 
amphoteric substances may also be studied. It also 
allows modeling of a number of other situations, 
such as partitioning of the buffer salts in addition to 
the solute partitioning. The behavior of all these 
systems is made more complex as the concentrations 
of solute and buffer become comparable and the 
system is rendered more interactive. Further numer- 
ical simulations are underway to explore these 
situations. 

Comparisons of these numerical solutions to our 
experimental work are limited because of the diffi- 
culties in measuring concentration as a function of 
position in two-phase systems. As noted above, both 
models are qualitatively in agreement with the 
experiments in some respects. However, the,width of 
the polarized zone is calculated to be narrower than 
that observed in our experiments. 
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